Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Arch Virol ; 168(6): 172, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37261601

RESUMO

Using high-throughput sequencing, we identified a novel carlavirus sequence in a 28-year-old 'Kotsifali' grapevine sample collected in Heraklion (Crete, Greece). Using RT-PCR and 5'/3' RACE together with Sanger sequencing, the complete genome sequence of 8299 nt was confirmed and found to contain five open reading frames (ORFs) but to lack an ORF6, which is present in some members of the genus Carlavirus. The novel sequence is most similar to those of two carlaviruses infecting caper, and taking into account the ICTV nomenclature, we propose the name "grapevine carlavirus 1" for this new virus.


Assuntos
Carlavirus , Vitis , Carlavirus/genética , Genoma Viral , Grécia , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Fases de Leitura Aberta , Doenças das Plantas
2.
Viruses ; 15(4)2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37113009

RESUMO

Chrysanthemum (Chrysanthemum morifolium) is an important ornamental and medicinal plant suffering from many viruses and viroids worldwide. In this study, a new carlavirus, tentatively named Chinese isolate of Carya illinoinensis carlavirus 1 (CiCV1-CN), was identified from chrysanthemum plants in Zhejiang Province, China. The genome sequence of CiCV1-CN was 8795 nucleotides (nt) in length, with a 68-nt 5'-untranslated region (UTR) and a 76-nt 3'-UTR, which contained six predicted open reading frames (ORFs) that encode six corresponding proteins of various sizes. Phylogenetic analyses based on full-length genome and coat protein sequences revealed that CiCV1-CN is in an evolutionary branch with chrysanthemum virus R (CVR) in the Carlavirus genus. Pairwise sequence identity analysis showed that, except for CiCV1, CiCV1-CN has the highest whole-genome sequence identity of 71.3% to CVR-X6. At the amino acid level, the highest identities of predicted proteins encoded by the ORF1, ORF2, ORF3, ORF4, ORF5, and ORF6 of CiCV1-CN were 77.1% in the CVR-X21 ORF1, 80.3% in the CVR-X13 ORF2, 74.8% in the CVR-X21 ORF3, 60.9% in the CVR-BJ ORF4, 90.2% in the CVR-X6 and CVR-TX ORF5s, and 79.4% in the CVR-X21 ORF6. Furthermore, we also found a transient expression of the cysteine-rich protein (CRP) encoded by the ORF6 of CiCV1-CN in Nicotiana benthamiana plants using a potato virus X-based vector, which can result in a downward leaf curl and hypersensitive cell death over the time course. These results demonstrated that CiCV1-CN is a pathogenic virus and C. morifolium is a natural host of CiCV1.


Assuntos
Carlavirus , Chrysanthemum , Genoma Viral , Carlavirus/genética , Filogenia , Nucleotídeos , China , Fases de Leitura Aberta
3.
Phytopathology ; 113(1): 98-103, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35852469

RESUMO

A new blueberry virus was discovered using high-throughput sequencing. Using sequence identity values, phylogenetics, and serological and biological properties, we propose the virus, putatively named blueberry virus S (BluVS), to be a distinct species within the genus Carlavirus (family Betaflexiviridae). The genome was analyzed in depth, and an infectious clone was developed to initiate studies on virus pathogenicity. Agroinfiltration of the binary vector construct produced severe systemic symptoms in Nicotiana occidentalis. Back-inoculation using sap from agroinfiltrated N. occidentalis produced identical symptoms to the recipient plants (N. occidentalis), and virus purification yielded flexuous carlavirus-like particles. However, unlike blueberry scorch virus (BlScV), BluVS caused symptomless infection in Chenopodium quinoa and reacted weakly to BlScV antibodies in an enzyme-linked immunosorbent assay. Collectively, the results provide evidence for the distinct speciation of BluVS. The availability of an infectious clone provides tools for future studies on the biology of the virus.


Assuntos
Mirtilos Azuis (Planta) , Carlavirus , Carlavirus/genética , Doenças das Plantas , Genoma Viral/genética , Genômica
4.
Virol J ; 19(1): 182, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36357910

RESUMO

BACKGROUND: Chrysanthemum virus B (CVB), a key member of the genus Carlavirus, family Betaflexiviridae, causes severe viral diseases in chrysanthemum (Chrysanthemum morifolium) plants worldwide. However, information on the mechanisms underlying the response of chrysanthemum plants to CVB is scant. METHODS: Here, an integrated next-generation sequencing and comparative transcriptomic analysis of chrysanthemum leaves was conducted to explore the molecular response mechanisms of plants to a Chinese isolate of CVB (CVB-CN) at the molecular level. RESULTS: In total, 4934 significant differentially expressed genes (SDEGs) were identified to respond to CVB-CN, of which 4097 were upregulated and 837 were downregulated. Gene ontology and functional classification showed that the majority of upregulated SDEGs were categorized into gene cohorts involved in plant hormone signal transduction, phenylpropanoid and flavonoid biosynthesis, and ribosome metabolism. Enrichment analysis demonstrated that ethylene pathway-related genes were significantly upregulated following CVB-CN infection, indicating a strong promotion of ethylene biosynthesis and signaling. Furthermore, disruption of the ethylene pathway in Nicotiana benthamiana, a model plant, using virus-induced gene silencing technology rendered them more susceptible to cysteine-rich protein of CVB-CN induced hypersensitive response, suggesting a crucial role of this pathway in response to CVB-CN infection. CONCLUSION: This study provides evidence that ethylene pathway has an essential role of plant in response to CVB and offers valuable insights into the defense mechanisms of chrysanthemum against Carlavirus.


Assuntos
Carlavirus , Chrysanthemum , Chrysanthemum/genética , Chrysanthemum/metabolismo , Carlavirus/genética , Transcriptoma , Etilenos/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Folhas de Planta , China , Regulação da Expressão Gênica de Plantas
5.
Arch Virol ; 167(12): 2555-2566, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36269413

RESUMO

Cowpea mild mottle virus (CPMMV) is a flexuous filamentous virus that belongs to the genus Carlavirus (family Betaflexiviridae). The CPMMV genome contains six open reading frames (ORFs), among which the triple gene block (TGB), encoded by ORFs 2 to 4, has been reported to encode movement proteins for different viruses. The subcellular localization of the TGB proteins of CPMMV isolate CPMMV:BR:MG:09:2 was analysed by transient expression of each protein fused to a fluorophore. Overall, the accumulation pattern and interactions among CPMMV TGB proteins (TGBp) were similar to those of their counterparts from the potex-like group. Considering these similarities, we evaluated the potential interactions between the TGB proteins of CPMMV and of potato virus X, which could complement cell-to-cell movement. The TGBp2 and TGBp3 of PVX had an effect on CPMMV TGBp1, directing it to the plasmodesmata, but the reverse was not true.


Assuntos
Carlavirus , Flexiviridae , Potexvirus , Proteínas Virais/genética , Proteínas Virais/metabolismo , Carlavirus/genética , Potexvirus/genética , Flexiviridae/genética
6.
Virus Genes ; 58(4): 367-371, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35426563

RESUMO

The complete genome sequences of two carlaviruses were determined by high-throughput sequencing of RNA extracted from ringspot and mosaic, disease symptoms on leaves of spider lily plants (Crinum asiaticum, family Amaryllidaceae) growing as landscape plants in Hawaii. One, named Nerine latent virus (NeLV)-Hawaii with a genome of 8281 nucleotide exhibited the highest nucleotide identity and amino acid similarity of 95.5% and 96.0%, respectively, to the genome sequence of an isolate of NeLV from Narcissus sp. in Australia (JQ395044). The second, named Hippeastrum latent virus (HiLV)-Hawaii with a genome of 8497 nucleotides exhibited the highest nucleotide identity and amino acid similarity, 84.3% and 88.7%, respectively, to the sequence of a previously uncharacterized HiLV isolate from a potted flowering plant, Amaryllis (Hippeastrum hybridum Hort) in Taiwan (DQ098905). The amino acid sequence similarities of replicase (Rep) and coat protein (CP) between HiLV-Hawaii and NeLV-Hawaii were 44.8% and 38.4%, respectively. Results of viral protein Rep and CP amino acid sequence comparisons from various carlaviruses provide evidence that HiLV and NeLV, previously classified as synonymous viruses are in fact unique viruses. This is the first report for the complete sequence, organization, and phylogenetic characterization of HiLV and the first detection of HiLV both in C. asiaticum and in the USA.


Assuntos
Amaryllidaceae , Carlavirus , Amaryllidaceae/genética , Aminoácidos/genética , Carlavirus/genética , Genoma Viral/genética , Sequenciamento de Nucleotídeos em Larga Escala , Nucleotídeos , Filogenia , Doenças das Plantas , RNA Viral/genética
7.
Arch Virol ; 166(12): 3499-3502, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34636953

RESUMO

In the present study, the genome sequence of a potential novel virus, tentatively named "rose virus C" (RVC), was mined from publically available transcriptomic data from a Rosa chinensis plant. The complete genome sequence of RVC consists of 8,386 nt, excluding a 3' poly(A) tail, and contains five ORFs. Phylogenetic analysis showed that RVC clustered with members of the genus Carlavirus, family Betaflexiviridae. The replicase gene had 48.8-52.1% nt sequence identity to those of other carlaviruses, while the CP gene had 40.4-45.9% nt sequence identity, which is far below the species demarcation cutoff of 72%. The incidence of RVC in rose plants was low (5.4%). Overall, our data suggest that RVC is a novel atypical virus of the genus Carlavirus.


Assuntos
Carlavirus , Rosa , Carlavirus/genética , Genoma Viral , Fases de Leitura Aberta , Filogenia , Doenças das Plantas , RNA Viral/genética
8.
Arch Virol ; 166(9): 2619-2621, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34213637

RESUMO

The genome of a new carlavirus isolate from asymptomatic wild Capparis spinosa L. plants in Sicily was sequenced via high-throughput sequencing (HTS) and 5'/3' RACE experiments. The complete genomic sequence was found to be 8,280 nt in length, excluding the poly(A) tail, and contained five putative open reading frames (ORFs). Molecular characterization revealed a close relationship to caper latent virus (CapLV), with 87% and 90% nucleotide sequence identity to available partial sequences of the ORFs encoding the replicase and coat protein of that virus. According to the molecular criteria for species demarcation, which is based on the ORF-1- and ORF-5-encoded proteins, the virus characterized in this study could be considered a variant of CapLV, and we have thus designated it as CapLV-W.


Assuntos
Capparis/virologia , Carlavirus/classificação , Carlavirus/genética , Carlavirus/isolamento & purificação , Doenças das Plantas/virologia , Sequenciamento Completo do Genoma , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Fases de Leitura Aberta , Filogenia , RNA Viral/genética , Sicília
9.
Virol J ; 18(1): 131, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34187522

RESUMO

BACKGROUND: Certification of seed potato as free of viruses is essential for stable potato production. Among more than 30 virus species infecting potato, potato leafroll virus (PLRV), potato virus S (PVS), potato virus X (PVX), and potato virus Y (PVY) predominate worldwide and should be the targets of a high-throughput detection protocol for seed potato quarantine. RESULTS: We developed an assay based on one-step real-time multiplex reverse transcription-polymerase chain reaction (mRT-PCR) with melt curve analysis for the four viruses and one internal control, potato elongation factor 1 alpha gene (EF1α). Virus-specific primers were derived from conserved regions among randomly selected representatives considering viral genomic diversity. Our assay simultaneously detected representative Japanese isolates of PLRV, O lineage of PVS, PVX, and NTN strain of PVY. The variability of melting temperature (Tm) values for each virus was confirmed using Japanese isolates, and virus species could be identified by the values of 87.6 for PLRV, 85.9 for PVX, 82.2 (Ordinary lineage) to 83.1 (Andean lineage) for PVS, and 79.4 (NA-N strain) to 80.5 (O strain and NTN strain) for PVY on average. The reliability of calculation was validated by comparing the calculated Tm values and measured Tm values and the values had a strong linear correlation (correlation of determination: R2 = 0.9875). Based on the calculated Tm values, representative non-Japanese isolates could also be identified by our assay. For removing false positives, two criteria were set for the evaluation of result; successful amplification was considered as 30.0 ≥ threshold cycle value, and the virus-specific peak higher than the EF1α-specific peak was considered as positive. According to these criteria, our assay could detect PLRV and PVS from 100-fold dilution of potato leaf homogenate and PVX and PVY from 1000-fold in a model assay. CONCLUSION: This new high-throughput detection protocol using one-step real-time mRT-PCR was sensitive enough to detect viruses in a 100-fold dilution of singly-virus contaminated homogenate in a model assay. This protocol can detect the four viruses in one assay and yield faster results for a vast number of samples, and greatly save the labor for seed potato quarantine and field surveys.


Assuntos
Carlavirus , Luteoviridae , Doenças das Plantas , Potexvirus , Potyvirus , Solanum tuberosum , Carlavirus/genética , Luteoviridae/genética , Reação em Cadeia da Polimerase Multiplex , Doenças das Plantas/virologia , Potexvirus/genética , Potyvirus/genética , Reprodutibilidade dos Testes , Transcrição Reversa , Solanum tuberosum/virologia
10.
Virus Res ; 303: 198389, 2021 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-33716182

RESUMO

Major themes in pathogen evolution are emergence, evolution of virulence, host adaptation and the processes that underlie them. RNA viruses are of particular interest due to their rapid evolution. The in vivo molecular evolution of an RNA plant virus was demonstrated here using a necrotic isolate of cowpea mild mottle virus (CPMMV) and a susceptible soybean genotype submitted to serial inoculations. We show that the virus lost the capacity to cause necrosis after six passages through the host plant. When a severe bottleneck was imposed, virulence reduction occurred in the second passage. The change to milder symptoms had fitness benefits for the virus (higher RNA accumulation) and for its vector, the whitefly Bemisia tabaci. Genetic polymorphisms were highest in ORF1 (viral replicase) and were independent of the symptom pattern. Recombination was a major contributor to this diversity - even with the strong genetic bottleneck, recombination events and hot spots were detected within ORF1. Virulence reduction was associated with different sites in ORF1 associated to recombination events in both experiments. Overall, the results demonstrate that the reduction in virulence was a consequence of the emergence of new variants, driven by recombination. Besides providing details of the evolutionary mechanisms behind a reduction in virulence and its effect under viral and vector fitness, we propose that this recombination-driven switch in virulence allows the pathogen to rapidly adapt to a new host and, potentially, switch back.


Assuntos
Carlavirus , Hemípteros , Vírus de RNA , Vigna , Animais , Carlavirus/genética , Vírus de DNA/genética , Hemípteros/genética , RNA , Vírus de RNA/genética , Recombinação Genética , Virulência/genética
11.
Arch Virol ; 166(5): 1501-1505, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33677680

RESUMO

The genus Carlavirus (family Betaflexiviridae, order Tymovirales) currently includes 53 species recognized by the ICTV. The NCBI GenBank database has 43 full-length carlavirus genome sequences (7,890 to 9,073 nt). Surprisingly, the type species Carnation latent virus is not associated with a complete genome sequence of a carnation latent virus (CLV) isolate; GenBank only has accessions with 1313 or fewer nucleotides. The goal of this study was to determine the full-length genome sequence of CLV. Naturally infected greenhouse-grown 'Kiwi Lace' carnation plants that tested positive for CLV by ELISA and RT-PCR were used as source plants for high-throughput sequencing, completed by 5' and 3' RACE and validated by Sanger sequencing of CLV-specific RT-PCR-generated amplicons. The complete CLV-KL sequence (MN450069) was determined to be 8,513 nt in length. In pairwise analysis, the genome shares 40-46% identity with recognized carlaviruses and the six in silico-translated proteins have 15-62% amino acid sequence identity to their respective carlavirus orthologs. The CLV-KL coat protein shares 98.4% identity with the NCBI reference sequence CLV-UK. In phylogenetic analysis, CLV clusters with butterbur mosaic virus, coleus vein necrosis virus, and garlic common latent virus. This is the first report of the full genome sequence of an isolate of carnation latent virus, the type member of the genus Carlavirus.


Assuntos
Carlavirus/genética , Dianthus/virologia , Genoma Viral/genética , Sequência de Aminoácidos , Sequência de Bases , Carlavirus/classificação , Carlavirus/isolamento & purificação , Mapeamento Cromossômico , Fases de Leitura Aberta , Filogenia , Doenças das Plantas/virologia , RNA Viral/genética , Proteínas Virais/genética
12.
Arch Virol ; 166(5): 1513-1515, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33686515

RESUMO

A novel virus was identified in aconite (Aconitum carmichaelii Debx.) in China by high-throughput sequencing (HTS) and tentatively named "aconite virus A" (AcVA). The genomic RNA of AcVA consists of 8,844 nucleotides, excluding the poly(A) at the 3' end. Analysis of the genomic organization of AcVA indicated that it possesses a genomic structure that is typical of carlaviruses and contains six putative open reading frames (ORFs). Pairwise analysis revealed that the replicase and coat protein of AcVA share the highest amino acid sequence identity (43.78% and 57.01%) with those of coleus vein necrosis virus (CVNV) and butterbur mosaic virus (ButMV), respectively. Based on the current classification criteria for carlaviruses, AcVA should be considered a distinct member of the genus Carlavirus.


Assuntos
Aconitum/virologia , Carlavirus/genética , Genoma Viral/genética , Sequência de Aminoácidos , Sequência de Bases , Carlavirus/classificação , China , Fases de Leitura Aberta , Filogenia , Doenças das Plantas/virologia , Plantas Medicinais/virologia , RNA Viral/genética , Proteínas Virais/genética
13.
J Virol Methods ; 292: 114124, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33711375

RESUMO

American hop latent virus (AHLV), hop latent virus (HLV) and hop mosaic virus (HMV) infect members of the Humulus genus worldwide, but very little is known of the biology and etiology of these viruses. A better understanding of these viruses from the molecular level to their economic impact relies on efficient diagnostic assays. Therefore, in this study we developed reverse transcription quantitative polymerase chain reaction (RT-qPCR) assays for the detection of AHLV, HLV, and HMV through an alignment of representative sequences from the National Center for Biotechnology Information (NCBI) database. These assays demonstrated unambiguously their high sensitivity by detecting the respective targets from as low as 102 copies of transcripts per reaction without any amplification from non-targets.


Assuntos
Carlavirus , Humulus , Vírus do Mosaico , Carlavirus/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
Arch Virol ; 166(1): 321-323, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33175220

RESUMO

A new virus resembling members in the genus Carlavirus was identified in an Out of Yesteryear rose (Rosa sp.) by high-throughput sequencing. The virus was discovered during the screening of a rose virus collection belonging to Foundation Plant Services (UC-Davis). The full genome of the virus is 8825 nt long, excluding a poly(A) tail, and includes six predicted genes coding for replicase, triple gene block, coat protein (CP), and nucleic acid binding protein. The closest relative of the putative virus is rose virus A (RVA; genus Carlavirus), with 75% and 78% aa sequence identity in the replicase and CP, respectively. The relationship with RVA and other carlaviruses was supported by phylogenetic analyses using replicase and CP sequences. Based on genome organization, sequence identity, and phylogenetic analysis, the virus found in the Out of Yesteryear plant represents a new member of the genus Carlavirus and is provisionally named "rose virus B" (RVB). Further testing by reverse transcription PCR confirmed the presence of RVB in the original source and seven additional rose selections from the same collection.


Assuntos
Carlavirus/genética , Rosa/virologia , Genoma Viral/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Fases de Leitura Aberta/genética , Filogenia , Doenças das Plantas/virologia , RNA Viral/genética , Análise de Sequência de DNA/métodos
15.
Arch Virol ; 165(12): 2953-2959, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33040310

RESUMO

Chrysanthemum virus B encodes a multifunctional p12 protein that acts as a transcriptional activator in the nucleus and as a suppressor of RNA silencing in the cytoplasm. Here, we investigated the impact of p12 on accumulation of major classes of small RNAs (sRNAs). The results show dramatic changes in the sRNA profiles characterised by an overall reduction in sRNA accumulation, changes in the pattern of size distribution of canonical siRNAs and in the ratio between sense and antisense strands, lower abundance of siRNAs with a U residue at the 5'-terminus, and changes in the expression of certain miRNAs, most of which were downregulated.


Assuntos
Carlavirus/genética , MicroRNAs/genética , Interferência de RNA , RNA de Plantas/genética , RNA Interferente Pequeno/genética , Chrysanthemum/genética , Chrysanthemum/virologia , Citoplasma/virologia
16.
Arch Virol ; 165(1): 241-244, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31701224

RESUMO

A novel virus was discovered in a Rosa wichuraiana Crep. by high-throughput sequencing and tentatively named "rose virus A" (RVA). Based on sequence identity and phylogenetic analysis, RVA represents a new member of the genus Carlavirus (family Betaflexiviridae). The genome of RVA is 8,849 nucleotides long excluding the poly(A) tail and contains six open reading frames (ORFs). The predicted ORFs code for a replicase, triple gene block (TGB), coat protein, and nucleic acid binding protein, as in a typical carlavirus. RVA is the first carlavirus identified in rose and has the highest nucleotide sequence similarity to poplar mosaic virus. Reverse transcription-PCR-based assays were developed to confirm the presence of RVA in the original source and to screen additional rose plants.


Assuntos
Carlavirus/genética , Rosa/virologia , Sequenciamento Completo do Genoma/métodos , Carlavirus/classificação , Tamanho do Genoma , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Fases de Leitura Aberta , Filogenia
17.
Arch Virol ; 164(11): 2891-2894, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31506787

RESUMO

Contigs with sequence similarity to potato virus P (PVP), which belongs to the genus Carlavirus, were identified by high-throughput sequencing analysis in potato tubers collected from a farmer's potato production field in Surazhevka, Artyom, Primorskiy Krai (Russia) in 2018. The complete genome sequence of this virus consisted of 8,394 nucleotides, excluding the poly(A) tail. This is the first report of PVP being detected outside South America. The isolate had high sequence similarity to PVP isolates from Argentina and Brazil, but low sequence similarity was observed in the genes encoding the RNA-dependent RNA polymerase (69% nucleotide sequence identity and 80% amino acid sequence identity) and coat protein (78% nucleotide sequence identity and 89% amino acid sequence identity). Phylogenetic analysis revealed that this PVP-like virus clustered with known PVP isolates but was distinct from them. Comparison of the sequences using the classification criteria of the ICTV indicated that this PVP-like virus is a strain of PVP.


Assuntos
Carlavirus/genética , Genoma Viral/genética , Doenças das Plantas/virologia , Solanum tuberosum/virologia , Sequência de Aminoácidos , Proteínas do Capsídeo/genética , Carlavirus/classificação , Carlavirus/isolamento & purificação , RNA Polimerases Dirigidas por DNA/genética , Sequenciamento de Nucleotídeos em Larga Escala , RNA Viral/genética , Federação Russa , Sequenciamento Completo do Genoma
18.
Viruses ; 11(8)2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31416257

RESUMO

Potato virus M (PVM) is a member of the genus Carlavirus of the family Betaflexviridae and causes large economic losses of nightshade crops. Several previous studies have elucidated the population structure, evolutionary timescale and adaptive evolution of PVM. However, the synonymous codon usage pattern of PVM remains unclear. In this study, we performed comprehensive analyses of the codon usage and composition of PVM based on 152 nucleotide sequences of the coat protein (CP) gene and 125 sequences of the cysteine-rich nucleic acid binding protein (NABP) gene. We observed that the PVM CP and NABP coding sequences were GC-and AU-rich, respectively, whereas U- and G-ending codons were preferred in the PVM CP and NABP coding sequences. The lower codon usage of the PVM CP and NABP coding sequences indicated a relatively stable and conserved genomic composition. Natural selection and mutation pressure shaped the codon usage patterns of PVM, with natural selection being the most important factor. The codon adaptation index (CAI) and relative codon deoptimization index (RCDI) analysis revealed that the greatest adaption of PVM was to pepino, followed by tomato and potato. Moreover, similarity Index (SiD) analysis showed that pepino had a greater impact on PVM than tomato and potato. Our study is the first attempt to evaluate the codon usage pattern of the PVM CP and NABP genes to better understand the evolutionary changes of a carlavirus.


Assuntos
Carlavirus/genética , Uso do Códon , Doenças das Plantas/virologia , Proteínas do Capsídeo/genética , Carlavirus/fisiologia , Códon/genética , Evolução Molecular , Genoma Viral , Solanum lycopersicum/virologia , Filogenia , Solanum tuberosum/virologia
19.
PLoS One ; 14(7): e0219024, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31339882

RESUMO

To elucidate the etiology of a new disease of shallot in France, double-stranded RNAs from asymptomatic and symptomatic shallot plants were analyzed using high-throughput sequencing (HTS). Annotation of contigs, molecular characterization and phylogenetic analyses revealed the presence in symptomatic plants of a virus complex consisting of shallot virus X (ShVX, Allexivirus), shallot latent virus (SLV, Carlavirus) and two novel viruses belonging to the genera Carlavirus and Potyvirus, for which the names of shallot virus S (ShVS) and shallot mild yellow stripe associated virus (SMYSaV), are proposed. Complete or near complete genomic sequences were obtained for all these agents, revealing divergent isolates of ShVX and SLV. Trials to fulfill Koch's postulates were pursued but failed to reproduce the symptoms on inoculated shallots, even though the plants were proved to be infected by the four viruses detected by HTS. Replanting of bulbs from SMYSaV-inoculated shallot plants resulted in infected plants, showing that the virus can perpetuate the infection over seasons. A survey analyzing 351 shallot samples over a four years period strongly suggests an association of SMYSaV with the disease symptoms. An analysis of SMYSaV diversity indicates the existence of two clusters of isolates, one of which is largely predominant in the field over years.


Assuntos
Carlavirus/genética , Flexiviridae/genética , Doenças das Plantas/virologia , Potyvirus/genética , Cebolinha Branca/virologia , Carlavirus/isolamento & purificação , Carlavirus/patogenicidade , Flexiviridae/isolamento & purificação , Flexiviridae/patogenicidade , França , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Potyvirus/isolamento & purificação , Potyvirus/patogenicidade , RNA Viral/genética , Análise de Sequência de RNA
20.
Infect Genet Evol ; 73: 167-174, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31054922

RESUMO

Potato virus M (PVM), which is a member of the genus Carlavirus in the family Betaflexviridae, causes critical economic losses of nightshade crops. PVM is transmitted by aphids in a non-persistent manner, by sap inoculation and also transmitted in tubers. Previously, several reports described the genetic structure of PVM. However, the evolutionary rate, timescale, spread and adaptation evolution of the virus have not been examined. In this study, we investigated the phylodynamics of PVM using 145 nucleotide sequences of the coat protein gene and 117 sequences of the cysteine-rich nucleic acid-binding protein (NABP) gene, which were sampled between 1985 and 2013. We found that at least three lineages with isolates that were defined geographically but not by the original host were clustered. The evolutionary rate of the NABP (1.06 × 10-2) was faster than that of the CP (4.12 × 10-3). The time to the most recent common ancestors (TMRCAs) is similar between CP (CIs 31-110) and NABP (CIs 28-33) genes. Based on CP and NABP genes, PVM migrated from China to Canada, Iran, India and European countries, and it circulated within China. Our study is the first attempt to evaluate the evolutionary rates, timescales and migration dynamics of PVM.


Assuntos
Adaptação Fisiológica/genética , Evolução Biológica , Carlavirus/genética , DNA Viral , Proteínas Recombinantes , Alinhamento de Sequência , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...